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Abstract
Nicotinamide adenine dinucleotide (NAD ) biosynthesis and its regulation
have recently been attracting markedly increasing interest. Aging is marked
by a systemic decrease in NAD  across multiple tissues. The dysfunction of
NAD  biosynthesis plays a critical role in the pathophysiologies of multiple
diseases, including age-associated metabolic disorders,
neurodegenerative diseases, and mental disorders. As downstream
effectors, NAD -dependent enzymes, such as sirtuins, are involved in the
progression of such disorders. These recent studies implicate NAD
biosynthesis as a potential target for preventing and treating
age-associated diseases. Indeed, new studies have demonstrated the
therapeutic potential of supplementing NAD  intermediates, such as
nicotinamide mononucleotide and nicotinamide riboside, providing a proof
of concept for the development of an effective anti-aging intervention.
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Introduction
In recent years, interest in nicotinamide adenine dinucleotide 
(NAD+) biology has significantly increased in many different  
fields of biomedical research. A number of new studies have 
revealed the importance of NAD+ biosynthesis for the pathophysi-
ologies of aging and aging-related diseases. This short review  
will highlight the recent progress in this new connection between 
NAD+ biosynthesis, aging, and disease. In particular, we will focus 
on the role of NAD+ in aging and longevity control, its effect 
on the function of NAD+-dependent enzymes such as sirtuins,  
and its relation to the development and progression of age- 
associated disorders. Finally, we will address the preventive and 
therapeutic potential of NAD+ intermediates. 

NAD+ biosynthetic pathways
NAD+ is an essential component of cellular processes necessary  
to support various metabolic functions1–5. The classic role of  
NAD+ is a co-enzyme that catalyzes cellular redox reactions, 
becoming reduced to NADH, in many fundamental metabolic  
processes, such as glycolysis, fatty acid beta oxidation, or the  
tricarboxylic acid cycle6–8. In addition to playing these roles, NAD+ 
has a critical role as the substrate of NAD+-consuming enzymes 
such as poly-ADP-ribose polymerases (PARPs), sirtuins, and 

CD38/157 ectoenzymes9–11. These NAD+-consuming enzymes have 
been known to mediate many fundamental cellular processes5.

There are five major precursors and intermediates to synthesize 
NAD+: tryptophan, nicotinamide, nicotinic acid, nicotinamide  
riboside (NR), and nicotinamide mononucleotide (NMN). NAD+ 
can be synthesized de novo by the conversion of the amino acid 
tryptophan through multiple enzymatic steps to nicotinic acid 
mononucleotide (NaMN)12,13. NaMN is converted to nicotinic 
acid dinucleotide (NaAD+) by NMN/NaMN adenylyltransferases 
(NMNATs) and then amidated to NAD+ by NAD+ synthetase.

In mammals, a major pathway of NAD+ biosynthesis is the  
salvage pathway from nicotinamide (Figure 1). Nicotinamide is 
converted to NMN, a key NAD+ intermediate, by nicotinamide  
phosphoribosyltransferase (NAMPT), the rate-limiting enzyme 
in this pathway12. NMNATs then convert NMN into NAD+14,15. 
NAMPT plays a critical role in regulating cellular NAD+  
levels12,13. On the other hand, nicotinic acid is converted to NaMN 
by nicotinic acid phosphoribosyltransferase (NPT)12,14,15. NR  
needs to be converted to NMN by nicotinamide ribose kinases, 
NMRK1 and NMRK2 (also known as NRK1 and NRK2), which 
phosphorylate NR16.

Figure 1. The major nicotinamide adenine dinucleotide (NAD+) biosynthetic pathway and NAD+-consuming enzymes in mammals.  
(A) The NAD+ biosynthetic pathway from the precursor nicotinamide (NIC). The pathway is mediated by nicotinamide phosphoribosyltransferase 
(NAMPT), which produces nicotinamide mononucleotide (NMN). NMN is immediately converted to NAD+ by NMN adenylyltransferases 
(NMNATs). Multiple enzymes consume NAD+, producing nicotinamide and various products. NIC can be salvaged to begin the biosynthetic 
pathway again. NMRK1 and NMRK2 (also known as NRK1 and NRK2), as well as CD73, can produce NMN and NR. (B) Enzymatic activity 
of sirtuins. The most common enzymatic reaction performed by sirtuins is the deacetylation of acetylated substrate proteins. The resulting 
products from the consumption of NAD+ are NIC and O-acetyl-ADP-ribose. Sirtuins can also catalyze several other deacylation reactions.  
(C) Enzymatic activity of poly-ADP-ribose polymerases (PARPs). In response to DNA damage, PARPs synthesize poly-ADP-ribose chains on 
a variety of target proteins, including itself, to act as a signal for DNA repair enzymes. The reaction produces the ADP-ribose chains and NIC. 
(D) Enzymatic activity of CD38. The CD38 ectoenzyme catalyzes the synthesis of ADP-ribose (ADPR) or cyclic ADPR (cADPR) from NAD+. 
(E) Enzymatic activity of SARM1. A newly discovered class of NADase, SARM1, consumes axonal NAD+ after injury, catalyzing the synthesis 
of ADPR and NIC as well as a small amount of cADPR.
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Maintenance of adequate NAD+ biosynthesis is paramount for cell 
survival and function. Derailment from normal NAD+ homeostasis 
substantially affects not only the NAD+/NADH pool required for 
redox reactions but also activities of NAD+-dependent enzymes for 
crucial cellular functions.

Mediators of aging: NAD+-dependent enzymes
It is now becoming a consensus that NAD+ levels decline at  
cellular, tissue/organ, and organismal levels during the course of 
aging17. Activities of NAD+-consuming enzymes are affected by 
this NAD+ decline, contributing to a broad range of age-associated 
pathophysiologies5,18.

Sirtuins are a family of NAD+-dependent deacetylases/deacylases  
which have central roles in translating NAD+ changes to the  
regulation of many regulatory proteins for metabolism, DNA  
repair, stress response, chromatin remodeling, circadian rhythm, 
and other cellular processes. Through the mediation of such broad 
functions, sirtuins are evolutionarily conserved regulators for aging 
and longevity in diverse organisms5,18. Mammals have seven sirtuin 
family members, SIRT1–7, among which SIRT1 is the ortholog  
of silent information regulator 2 (Sir2) in budding yeast11. The  
various sirtuin family members have a number of enzymatic  
functions and are localized to different subcellular compartments19. 
Briefly, SIRT1 is localized mainly to the nucleus but is also  
present in the cytosol20. SIRT2 is present mainly in the cytosol but 
can also be present in the nucleus21. SIRT3–5 are localized in the  
mitochondrial compartment22. SIRT6 is localized in the nucleus 
as well, and SIRT7 is localized in the nucleolus23,24. Sirtuins are 
classified as class III histone deacetylases dependent on NAD+. 
However, they target numerous non-histone proteins to alter their 
functions. Furthermore, sirtuins have other enzymatic activities, 
including demethylglutarylase and other lysine deacylase activities  
of SIRT425, demalonylase and desuccinylase activities of SIRT526, 
de-long chain fatty deacylase activity of SIRT627, and ADP- 
ribosyltransferase activity of SIRT4/SIRT628,29. These various 
NAD+-dependent functions of sirtuins place them at a key position 
for the regulation of aging and longevity in diverse organisms5,18. 
For example, we have demonstrated that brain-specific SIRT1- 
overexpressing (BRASTO) transgenic mice are able to delay the 
process of aging and extend life span30. Whole-body  SIRT6- 
overexpressing male mice also show life span extension31.

PARPs also consume NAD+, cleaving it into nicotinamide and 
ADP-ribose (ADPR) and producing a chain of ADPR. Among 
many PARP family members, PARP1 and 2 are major NAD+  
consumers in the nucleus, responding to DNA strand breaks and 
facilitating the DNA repair process32. As NAD+ is a common  
substrate between PARPs and SIRT1, there is a competition  
between their activities. PARP1/2 deletion is able to enhance 
the activity of SIRT1, resulting in the increases in mitochondrial  
content, fatty acid oxidation, and protection from diet-induced 
obesity33. Whereas PARP1 deletion increases NAD+ levels, PARP2 
deletion increases Sirt1 expression through its function to bind to 
the promoter of the Sirt1 gene and repress its expression33. During 
the course of aging, PARP activation, possibly due to constant  
DNA damage, appears to contribute to significant decreases in 
intracellular NAD+, exacerbating the decrease in SIRT1 activity34.

CD38, one of the primary NADases in mammals, can modulate 
the NAD+ levels as observed in CD38-deficient mice35,36. Although 
the activity of CD38 mainly generates ADPR and nicotinamide  
by hydrolysis of NAD+, it has a secondary role to mediate  
cellular signaling through the generation of cyclic ADPR  
(cADPR), a potent Ca2+ inducer10. The NADase activity of CD38 
has been studied in depth35–37. CD38 can also degrade the NAD+ 
precursors, NMN and NR, as well as NAD+, thus modulating  
cellular NAD+ content38,39. It has been reported that CD38 protein 
levels increase in multiple tissues and organs over age, contribut-
ing to NAD+ decline40. Therefore, CD38-dependent modulation  
of NAD+ can alter the activity of SIRT1 and other sirtuins, as  
well as other NAD+-consuming enzymes, and affect cellular  
signaling and metabolism36,37. Inhibiting CD38 can also promote 
NAD+ levels and improve glucose and lipid metabolism41.

A newly discovered class of NAD+ hydrolases is sterile alpha and 
Toll/interleukin-1 receptor motif-containing 1 (SARM1)42. SARM1 
is central to the degeneration of axons after injury. Axonal injury 
is accompanied by a depletion of NAD+, and loss of SARM1  
function delays axonal degeneration. It has been shown that  
the Toll/interleukin-1 receptor (TIR) domain of SARM1 is 
responsible for the NAD+ hydrolase activity and promotes 
axonal degeneration42. This discovery opens a new opportunity 
to develop the treatment of axonopathy, brain injury, and other  
neurodegenerative diseases.

NAD+ decline as an important trigger for age-
associated pathophysiologies
The decline in NAD+ over age was originally recognized in mice 
overexpressing SIRT1 in pancreatic β cells (BESTO mice)43. 
Young BESTO mice showed a significant improvement of  
glucose-stimulated insulin secretion. However, as they aged, this 
phenotype was completely lost. Interestingly, NMN supplementa-
tion was able to restore this phenotype in the aged BESTO mice 
and even improve glucose-stimulated insulin secretion in aged  
wild-type mice44. Thus, NAD+ decline over age was the cause for 
the loss of the BESTO phenotype. These findings suggest that 
the reduction of the NAD+ pool with age is responsible for the  
age-associated impairment of glucose-stimulated insulin secre-
tion. Since this report, a number of studies have also found that 
NAD+ declines over age in worms, flies, and mice5,8,17,18. Particu-
larly in mice, it has been shown that several different tissues and 
organs show decreases in NAD+ levels over age, causing metabolic  
dysfunctions, cardiovascular diseases, neurodegenerative disorders, 
and cancer17,43–45.

A significant cause for this age-associated NAD+ decline is 
the decrease in NAMPT-mediated NAD+ biosynthesis. It has 
been shown that the expression of Nampt at both mRNA and  
protein levels is reduced over age in a variety of tissues45,46. This  
age-associated decrease in Nampt expression causes a reduc-
tion in NAD+ in those same tissues, affecting the activities of 
NAD+-dependent enzymes and redox reactions within the cell  
and leading to functional decline. Therefore, supplementa-
tion with NAD+ intermediates, such as NMN and NR, can  
effectively restore the NAD+ pool and cellular functions in aged 
animals.
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Another cause for NAD+ decline with age is the increase in 
NAD+ consumption, and this is mainly due to the activation of 
PARPs33. It has been reported that PARP1 activity increases, 
potentially due to the accumulation of DNA damage, so that more  
poly-ADP-ribose molecules are synthesized in aged tissues33. 
This continuous PARP activation further depletes the NAD+ pool 
and causes a reduction in the activity of SIRT1. Furthermore, 
ectopic PARP1 expression can cause multiple age-associated  
phenotypes47. When PARP1 is knocked out, NAD+ levels and  
SIRT1 activity significantly increase. Similar effects can be obtained 
by pharmacologically inhibiting PARP activity33. The inhibition 
of PARP activity thus improves metabolic phenotypes through 
the activation of SIRT1. In contrast, it was recently reported that  
DNA damage repair decreases with age, along with a decrease 
in PARP1 activity48. Interestingly, deleted in breast cancer  
1 (DBC1) can bind to NAD+ through its Nudix homology domain 
(NHD), which prevents it from binding to PARP1. As NAD+ 
declines over age, DBC1 begins to bind to PARP1, reducing  
its DNA damage repair capacity49. Therefore, it has been  
proposed that age-associated NAD+ decline triggers the interac-
tion between DBC1 and PARP1, contributing to the accumulation  
of DNA damage over age49. Whether PARP1 is activated or inhib-
ited over age could be cell type- or tissue-dependent, and further 
investigation will be required to clarify this contradiction. As 
mentioned above, the expression and activity of CD38 have been 
reported to increase with age40. Indeed, CD38-deficient mice  
maintain NAD+ levels, mitochondrial respiration, and metabolic 
functions with age36. Therefore, CD38 might have a significant  
contribution to age-associated NAD+ decline in certain tissues.

The combination of decreased NAD+ biosynthesis and increased 
NAD+ consumption exacerbates the depletion of NAD+, caus-
ing a variety of age-associated pathophysiologies43–45. Which one 
contributes further to the depletion of NAD+ may be dependent 
on cell types and tissues. No matter what causes NAD+ decline, it 
seems that major downstream mediators are sirtuins. The roles of  
sirtuins in the pathogenesis of age-associated diseases are  
summarized below.

Diabetes
SIRT1 is important for promoting glucose-stimulated insulin  
secretion in pancreatic β-cells50,51. Additionally, SIRT1 has a  
protective effect against insulin resistance in peripheral tissues, 
including adipose tissue, liver, and skeletal muscle52. These findings 
suggest that SIRT1 is important for glucose homeostasis and the  
prevention of type 2 diabetes. Whole-body Sirt1-overexpressing  
transgenic mice, when fed a high-fat diet (HFD), have shown 
improvements in glucose tolerance through reduction of hepatic 
glucose production52. Additionally, these mice do not show 
changes in body weight or composition. In the kidney of diabetic 
model mice, SIRT1 inhibits oxidative stress, which can lead to  
nephropathy, by induction of cyclooxygenase-2 (COX-2)  
expression53. It has also been shown that administration of  
NMN ameliorates glucose intolerance in HFD-induced type  
2 diabetic mice, enhances hepatic insulin sensitivity, and restores 
oxidative stress gene expression, and inflammatory responses, 
partly through the activation of SIRT145.

Non-alcoholic fatty liver disease
Non-alcoholic fatty liver disease (NAFLD) is characterized by  
steatosis of the liver and is linked with insulin resistance and  
metabolic syndrome. Studies have observed a reduction of  
sirtuins in NAFLD54. SIRT1/3/5/6 are reported to be reduced 
in patients with NAFLD54. This reduction is accompanied by 
an increase in lipogenic genes such as fatty acid synthase and 
SREBP-1. SIRT1 and SIRT3 have particularly been investigated in 
regard to NAFLD. SIRT1 expression is reduced by HFD55. Over-
expression of SIRT1 upregulates fatty acid oxidation pathways  
and downregulates lipogenic pathways, protecting the liver from  
steatosis. SIRT3 function is impaired in HFD, leading to hyper-
acetylation of target proteins in the mitochondria and  impair-
ing their activities56–58. SIRT3-deficient mice exacerbate these  
phenotypes, while overexpression can ameliorate NAFLD59.

Atherosclerosis
SIRT1 has been shown to improve vascular function. SIRT1 is 
positioned to affect many pathways important for endothelial  
function60–63. SIRT1 suppresses the expression of inflammatory 
factors, including interleukin-6 (IL-6), monocyte chemoattractant 
protein 1 (MCP-1), intercellular adhesion molecule 1 (ICAM-1), 
matrix metalloproteinase 14 (MMP14), and vascular cell adhe-
sion molecule 1 (VCAM-1)64. Additionally, SIRT1 improves 
free fatty acid, triglyceride, total cholesterol, and blood glucose  
levels65,66. These protective effects of SIRT1 indicate that it acts  
as an anti-atherosclerosis agent. Consistent with these findings, 
NMN administration dramatically improves vascular function in 
aged mice, partly through the activation of SIRT167.

Alzheimer’s disease
Alzheimer’s disease (AD) is marked by multiple pathologies, 
including neuroinflammation, amyloid-beta plaques, mitochon-
drial damage, and increased oxidative stress68,69. Patients with AD  
have lowered expression of SIRT170,71, which is recapitulated in the 
hippocampus of AD model mice72–75. SIRT1 activation is capable  
of reducing the amount of oligomerized amyloid beta through 
upregulating the production of alpha-secretase68,69. This is  
corroborated by mouse models overexpressing SIRT1 and amyloid  
precursor protein. Additionally, SIRT1 promotes neuronal  
function and survival in AD model mice. CA1-localized SIRT1 
overexpression not only preserves learning and memory in AD 
mice but enhances cognitive function in non-AD model mice76.

Retinal degeneration
Retinal degeneration is prominent in diseases such as macular 
degeneration and diabetic retinopathy. A recent study reported the 
importance of SIRT3 and SIRT5 in the survival of retinal photore-
ceptors77. In particular, mitochondrial SIRT3 activity is sensitive to 
the reduction in NAD+. Decreases in retinal NAD+ were detected 
in multiple retinal degenerative disorders, including age-associated 
dysfunction, diabetic retinopathy, and light-induced degeneration77. 
Supplementation with the NAD+ intermediate NMN was able to 
restore retinal function77. These findings suggest a possible thera-
peutic treatment for a wide variety of diseases with photoreceptor 
degeneration.
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Depression
Depression is a complex psychiatric disorder associated with a 
number of pathologies, including inflammation, synaptic dysfunc-
tion, metabolic syndrome, and cognitive deficit. Sirtuins have been 
shown to have a role in the development of depression78. In the 
dentate gyrus region of the hippocampus, it has been shown that 
SIRT1 is decreased under conditions of chronic stress, which has 
been associated with depressive-like behaviors79. Additionally, inhi-
bition of SIRT1 by genetic or pharmacological methods has repro-
duced depressive behaviors. Activation of SIRT1 is able to lead to  
anti-depressive behaviors79. However, it has been observed that 
SIRT1 regulates expression of monoamine oxidase A (MAO-A),  
which lowers serotonin and drives anxiety-like behaviors80,  
indicating that a balance in SIRT1 expression/activity is important 
for mood disorders.

SIRT2 has also been reported in mood disorders. Hippocam-
pal SIRT2 expression is decreased in chronic stress conditions81.  
Pharmacological inhibition of SIRT2 recapitulates depressive 
behaviors. Adenovirus-mediated overexpression of SIRT2 produces 
anti-depressive behaviors, which were abolished when hippocam-
pal neurogenesis was disrupted by X-irradiation81.

Interventions to achieve “productive aging”
NAD+ intermediates, NMN and NR, are promising candidates 
to restore NAD+ levels in disease models and aged animals17. A 
number of studies have shown that both NAD+ intermediates are 
effective to prevent and treat age-associated pathophysiologies.

We have shown that supplementation of NMN, a key NAD+ 

intermediate, is effective at ameliorating age-associated meta-
bolic disorders and slowing the progression of a multitude of 
age-associated physiological phenotypes45,82. Briefly, in the  
12-month NMN administration study, age-associated body  weight 
gain was ameliorated, energy metabolism and physical activity  
were improved, and gene expression changes associated  
with age were reversed. This study demonstrates NMN as an  
effective anti-aging agent82. Other recent studies have also reported 
that NMN administration restores a depleted NAD+ pool and is  
able to improve multiple aspects of disease. In a mouse AD  
model, one study reported that NMN improved mitochondrial  
respiration, a hallmark in the progression of AD and other  
neurodegenerative disorders83. NMN administration has also  
shown improvements of mouse cognitive behaviors in the context 
of AD as well as improving electrophysiological deficits detected 
on hippocampal slices84,85. These findings suggest that NMN  
could also be a promising therapeutic agent for the treatment of 
AD and other neurodegenerative disorders. Additionally, we have 
shown the importance of NAD+ biosynthesis in neuronal function.  
NAMPT is critical for neural stem cell proliferation and self- 
renewal. With age, NAMPT and NAD+ levels decrease in the  
hippocampus, along with a decrease in the neural stem cell 

pool46. NMN administration is able to rescue the NAD+ levels and  
enhance the neural stem cell pool46.

NR, another NAD+ intermediate, has also shown beneficial  
effects in age-associated disorders. In prediabetic and diabetic 
mice under an HFD, NR administration improves steatosis of the 
liver, glucose tolerance, and weight gain86,87. These findings also 
suggest that NR administration could be an effective therapeutic 
agent for age-associated metabolic disorders. With age, the regen-
erative capacity of muscle decreases as muscle stem cells enter  
senescence. This is concomitant with a decrease in NAD+ and 
a reduction of the mitochondrial unfolded protein response 
(mtUPR)88. When NR is given, the muscle stem cell self-renewal 
capacity is restored, and the mtUPR is activated, improving  
the mitochondrial stress response. Additionally, in this study, mice 
which started receiving NR supplementation at two years of age 
showed a significant, moderate extension of life span88. Dietary 
supplementation of NR significantly improves NAD+ levels in 
the cerebral cortex and ameliorates cognitive deterioration89.  
Application of NR in the context of hippocampal slice electro-
physiology ameliorates deficits in long-term potentiation in the 
CA1 region. In this model system, NR increases PGC-1α, which 
regulates β-secretase and decreases amyloid-beta peptide. Though 
not addressed, the role of NAD+-consuming enzymes could be 
central to these beneficial effects observed. It seems likely that 
NAD+ depletion occurs in certain neurodegenerative diseases. 
Nuclear DNA damage has been suggested to be associated with  
neurodegenerative disorders90. Thus, supplementation of NAD+ 
intermediates, NMN and NR, would be effective agents to prevent 
and treat neurodegenerative disorders (Table 1), and this is critical 
to achieve “productive aging”.

Conclusions
It is now clear that systemic NAD+ decline is one of the  
fundamental molecular events that regulate the process of aging 
and possibly limit organismal life span. NAD+ biosynthesis  
particularly mediated by NAMPT and NAD+ consumption by  
NAD+-consuming enzymes are in a delicate balance so that  
perturbations to either side can cause significant derailment of 
the system. If NAMPT-mediated NAD+ biosynthesis is disturbed 
or if NAD+ consumption is increased because of chronic DNA 
damage that elicits PARP activation, the intracellular NAD+ pool 
is decreased, causing organismal functional decline. Different 
NAD+-consuming enzymes, such as sirtuins, PARPs, CD38, and 
SARM1, might be affected in a cell type- or tissue-dependent  
manner, and loss of NAD+ homeostasis can lead to dysfunc-
tion of basic physiological systems throughout the body. We now 
have increasing bodies of evidence supporting that interventions 
using NAD+ intermediates, such as NMN and NR, can bolster the  
system by restoring the available NAD+ and mitigate physiologi-
cal decline associated with aging. We are at an exciting point in 
time when we can effectively test the importance of NAD+ for the 
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Table 1. Beneficial effects of supplementation of NAD+ intermediates, such as 
nicotinamide mononucleotide and nicotinamide ribose.

Phenotype Normal 
progression

NAD+ precursor 
intervention

Reference

Aging

Body weight ↑ ↓ 82

Energy metabolism ↓ ↑ 82

Mitochondrial function ↓ ↑ 82

Insulin sensitivity ↓ ↑ 17,82

Diabetes

Insulin sensitivity ↓ ↑ 17

Glucose tolerance ↓ ↑ 17,86,87

Oxidative stress 
response

↓ ↑ 86,87

Liver steatosis ↑ ↓ 86,87

Weight gain ↑ ↓ 86,87

Alzheimer’s 
disease

Mitochondrial respiration ↓ ↑ 83

PGC1α ↓ ↑ 89

Beta-secretase ↑ ↓ 89

Cognitive behaviors ↓ ↑ 84,85,89

Long-term potentiation ↓ ↑ 84,85

A more detailed summary is available in 17. NAD+, nicotinamide adenine dinucleotide.

prevention and treatment of aging and aging-related diseases in 
humans.
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